Equations and Conversion Factors for Chapters 10 & 11

Note: the curvy volume symbol in the book is not in a standard font; below, V = velocity and V = volume.

W = mg	$F_R = P_{avg} A$	$Pa = \frac{N}{2}$
$A_{circle} = \frac{\pi}{4} d^2$	$P = \rho g h$	m ²
$V_{\rm sphere} = \frac{\pi d^3}{6}$	$F_{B} = \rho_{fluid} g V$	$N = \frac{kg m}{s^2}$
$\tau = \frac{F}{A}$	$y_P = y_C + \frac{I_{xx,c}}{\left(y_C + \frac{P_0}{Q_C}\right)A}$	$W = \frac{N m}{s}$
$F_{film} = \frac{\mu A V}{l}$	Ignoring P_0 :	J = N m
$\Delta P_{droplet} = \frac{2\sigma_s}{R}$	$y_P = y_C + \frac{I_{xx,c}}{y_C A}$	$^{\circ}C + 273 = K$
$\Delta P_{soap bubble} = \frac{4 \sigma_s}{R}$	Rectangle: bh^3	$\rho_{water} = 1000 \frac{\text{kg}}{\text{m}^3}$
$h = \frac{2\sigma_s}{\rho g R} \cos \phi$	$I_{xx,c} = \frac{1}{12}$	$g=9.81\frac{\mathrm{m}}{\mathrm{s}^2}$
		$P_0 = 1 \text{atm} = 101 \text{kPa}$
Metric prefixes		

10^{3} = nano- = 10⁻⁹ k = kilo-= n = micro- = 10⁻⁶ 10^{6} M = mega - =μ G = giga-= milli- = 10⁻³ 10^{9} = m $= 10^{-2}$ Т $= 10^{12}$ = centi-= teraс

Types of Problems

- General knowledge: types of flow, cavitation, boundary layer, why concrete canoes float, why it's hard to clap your hands underwater, etc.
- Static pressure & resultant force on a submerged flat or curved surface. Location of resultant force.
- Capillary tube
- Buoyancy
- Surface tension on a droplet or bubble
- Block on a ramp, with or without oil